Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)cadmate(II)]-di- μ -bromido]

Bi-Song Zhang

College of Material Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China Correspondence e-mail: zbs_jy@163.com

Received 2 April 2007; accepted 26 April 2007

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.011 Å; R factor = 0.029; wR factor = 0.067; data-to-parameter ratio = 15.8.

The title compound, $[CdBr_2(C_{12}H_8N_2)]_n$, is a 1:1 adduct of cadmium bromide with 1,10-phenanthroline (phen), which contains an infinite chain consisting of Cd₂Br₂ parallelograms sharing the Cd coners. The chain propagates along the c axis. Both the Cd^{II} atom and the phen molecule lie on a twofold rotation axis. The Cd^{II} atom is coordinated by two N atoms from a chelating phen ligand and four Br atoms to complete a distorted octahedral geometry. The closest atom-to-atom distance of 3.35 (1) Å between the phen ligands of two adjacent chains indicates the existence of π - π interactions, which result in a two-dimensional layer parallel to the bc plane. The layers are associated through weak C-H···Br hydrogen bonds.

Related literature

For related literature, see: Bell et al. (1982); Bigoli et al. (1983); Bonomo et al. (1989); Huang et al. (1998); Kimachi et al. (1995); Chen et al. (2003); Zhou et al. (2003).

Experimental

Crystal data

 $[CdBr_2(C_{12}H_8N_2)]$ $M_r = 452.42$ Monoclinic, C2/c a = 16.7781 (7) Å b = 10.7594 (7) Å c = 7.4213 (3) Å $\beta = 108.664 \ (4)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.340, T_{\max} = 0.511$ (expected range = 0.304–0.457)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	79 parameters
$wR(F^2) = 0.067$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.59 \text{ e} \text{ Å}^{-3}$
1247 reflections	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C2{-}H2{\cdots}Br1^{i}\\ C5{-}H5{\cdots}Br1^{ii} \end{array}$	0.96 0.96	2.88 2.87	3.816 (12) 3.815 (5)	166 167

 $V = 1269.26 (11) \text{ Å}^3$

 $0.23 \times 0.12 \times 0.10 \text{ mm}$

7231 measured reflections

1247 independent reflections

998 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 7.99 \text{ mm}^{-1}$

T = 290 (2) K

 $R_{\rm int} = 0.039$

Z = 4

Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, z - 1$; (ii) $-x + 1, y - 1, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The author gratefully acknowledges the financial support of the Education Office of Zhejiang Province (grant No. 20051316).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2057).

References

- Bell, N. A., Dee, T. D., Goldstein, M. & Nowell, I. W. (1982). Inorg. Chim. Acta, 65, L87-L89.
- Bigoli, F., Lanfranchi, M., Leporati, E. & Pellinghelli, M. A. (1983). Acta Cryst. C39. 1333-1335
- Bonomo, R., Bottino, F., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1989). Inorg. Chem. 28, 4593-4598.
- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H.-B., Zhou, Z.-H., Wan, H.-L. & Ng, S. W. (2003). Acta Cryst. E59, m845-m846.
- Huang, C. F., Wei, H. H., Lee, G. H. & Wang, Y. (1998). Inorg. Chim. Acta, 279, 233-237.

Kimachi, S., Ikeda, S. & Azumi, T. (1995). J. Phys. Chem. 99, 1242-1245.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhou, Y.-F., Xu, Y., Yuan, D.-Q. & Hong, M.-C. (2003). Acta Cryst. E59, m821m823.

supplementary materials

Acta Cryst. (2007). E63, m1562 [doi:10.1107/S1600536807020831]

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)cadmate(II)]-di- μ -bromido]

B.-S. Zhang

Comment

Polynuclear d¹⁰ metal complexes have been found to exhibit intriguing structural and photoluminescent properties. Clbridged Cd^{II} polymeric complexes are of considerable interest because they may act as photoactive materials. Structures of Cl-bridged Cd^{II} polymeric complexes have been studied (Bell *et al.*, 1982; Bigoli *et al.*, 1983; Bonomo *et al.*, 1989; Huang *et al.*, 1998). However, Cd^{II} polymeric complexes with a CdBr₂N₂ coordination polydedron have been rarely reported. The phosphorescence and zero-field optically detected magnetic resonance studies with powder of CdX₂(phen), (phen = 1,10-phenanthroline; X = Cl, Br, and I) (Kimachi *et al.*, 1995) and the crystal structures of CdCl₂(phen) and CdCl₂ (2,2'bipyridine) have been reported (Chen *et al.*, 2003; Zhou *et al.*, 2003). We have introduced Br⁻ ion as a bridging ligand, and synthesized the Br-bridged Cd complex, [CdBr₂(phen)]_n, (I), by a hydrothermal reaction.

The structure of compound (I) (Fig. 1), contains one-dimensional chains extending in the c direction (Fig 2). Both Cd^{II} atom and phen molecule lie on the twofold rotation axis. The Cd^{II} atom is coordinated by two N atoms from a chelating phen ligand and four Br atoms to complete a distorted CdN₂Br₄ octahedral geometry. The average Cd—N bond length is 2.350 (3) Å and the bond lengths of Cd—Br are 2.6813 (5)Å and 2.9003 (5) Å. The Cd···Cd distance in the chain is 4.047 (1) Å, which is longer than that of the Cl-bridged Cd complex [3.931 (9) Å]. The closest atom-to-atom distance of 3.35 (1)Å between the phen ligands of two adjacent chains indicates the existence of π - π interactions, which result in a two-dimensional layer parallel to the *bc* plane (Fig. 3). The layers are associated through weak C—H···Br hydrogen bonds (Table 1).

Experimental

Freshly prepared CdCO₃ (0.14 g, 0.812 mmol), phen·H₂O (0.10 g, 0.505 mmol), 2-bromobenzoic acid (0.10 g, 0.498 mmol), CH₃OH/H₂O (12 ml; ν/ν =1:2) were mixed and stirred for 2 h. The resulting suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 393 K for 7 d. After the autoclave was cooled to room temperature, colorless block crystals suitable for X-ray analysis were obtained.

Refinement

All H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The structure of (I), showing the coordination geometry of Cd^{II} atom. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity. [symmetry codes: (i) 1 - x, y, 1/2 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, 1 - y, -z; (iv) x, 1 - y, z - 1/2.]

Fig. 2. A view of the one-dimensional chain along the c axis in (I). H atoms have been omitted for clarity.

Fig. 3. A packing diagram for (I), viewed down the c axis. Dashed lines indicate hydrogen bonds.

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)cadmate(II)]-di- μ -bromido]

Crystal data	
$[CdBr_2(C_{12}H_8N_2)]$	$F_{000} = 848$
$M_r = 452.42$	$D_{\rm x} = 2.368 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 961 reflections
<i>a</i> = 16.7781 (7) Å	$\theta = 2.3 - 26.0^{\circ}$
<i>b</i> = 10.7594 (7) Å	$\mu = 7.99 \text{ mm}^{-1}$
c = 7.4213 (3) Å	T = 290 (2) K
$\beta = 108.664 \ (4)^{\circ}$	Block, colourless
$V = 1269.26 (11) \text{ Å}^3$	$0.23\times0.12\times0.10~mm$
Z = 4	

Data collection

Radiation source: fine-focus sealed tube998 reflections with $I > 2\sigma(I)$ Monochromator: graphite $R_{int} = 0.039$ $T = 290(2)$ K $\theta_{max} = 26.0^{\circ}$ φ and ω scans $\theta_{min} = 2.3^{\circ}$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -20 \rightarrow 18$ $T_{min} = 0.340, T_{max} = 0.511$ $k = -13 \rightarrow 10$	Bruker SMART CCD area-detector diffractometer	1247 independent reflections
Monochromator: graphite $R_{int} = 0.039$ $T = 290(2)$ K $\theta_{max} = 26.0^{\circ}$ φ and ω scans $\theta_{min} = 2.3^{\circ}$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -20 \rightarrow 18$ $T_{min} = 0.340, T_{max} = 0.511$ $k = -13 \rightarrow 10$	Radiation source: fine-focus sealed tube	998 reflections with $I > 2\sigma(I)$
$T = 290(2)$ K $\theta_{max} = 26.0^{\circ}$ φ and ω scans $\theta_{min} = 2.3^{\circ}$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -20 \rightarrow 18$ $T_{min} = 0.340, T_{max} = 0.511$ $k = -13 \rightarrow 10$	Monochromator: graphite	$R_{\rm int} = 0.039$
φ and ω scans $\theta_{\min} = 2.3^{\circ}$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -20 \rightarrow 18$ $T_{\min} = 0.340, T_{\max} = 0.511$ $k = -13 \rightarrow 10$	T = 290(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -20 \rightarrow 18$ $k = -13 \rightarrow 10$ $T_{\min} = 0.340, T_{\max} = 0.511$ $k = -13 \rightarrow 10$	φ and ω scans	$\theta_{\min} = 2.3^{\circ}$
$T_{\min} = 0.340, \ T_{\max} = 0.511$ $k = -13 \rightarrow 10$	Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -20 \rightarrow 18$
	$T_{\min} = 0.340, \ T_{\max} = 0.511$	$k = -13 \rightarrow 10$

supplementary materials

7231 measured reflections $l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + 3.3613P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.067$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$
1247 reflections	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$
79 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.00093 (19)

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.5000	0.42497 (3)	0.2500	0.04136 (18)
Br1	0.60185 (3)	0.58225 (4)	0.49961 (6)	0.04905 (19)
N1	0.4258 (2)	0.2472 (3)	0.1038 (5)	0.0462 (9)
C1	0.3527 (3)	0.2477 (6)	-0.0359 (8)	0.0699 (15)
H1	0.3291	0.3253	-0.0919	0.084*
C2	0.3095 (5)	0.1378 (9)	-0.1055 (11)	0.105 (3)
H2	0.2563	0.1406	-0.2050	0.125*
C3	0.3414 (7)	0.0289 (8)	-0.0353 (13)	0.112 (4)
Н3	0.3095	-0.0452	-0.0812	0.135*
C4	0.4194 (6)	0.0225 (5)	0.1050 (10)	0.085 (2)
C5	0.4646 (8)	-0.0905 (4)	0.1855 (12)	0.131 (7)
H5	0.4391	-0.1695	0.1417	0.157*
C6	0.4603 (3)	0.1372 (4)	0.1760 (6)	0.0534 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0494 (3)	0.0298 (2)	0.0357 (3)	0.000	0.00083 (19)	0.000
Br1	0.0535 (4)	0.0480 (3)	0.0414 (3)	-0.0127 (2)	0.0092 (2)	-0.00875 (17)
N1	0.049 (2)	0.044 (2)	0.051 (2)	-0.0127 (17)	0.0228 (18)	-0.0174 (16)
C1	0.053 (3)	0.093 (4)	0.065 (3)	-0.018 (3)	0.021 (3)	-0.037 (3)
C2	0.074 (5)	0.157 (7)	0.096 (5)	-0.061 (5)	0.044 (4)	-0.083 (5)
C3	0.150 (8)	0.110 (6)	0.120 (6)	-0.090 (6)	0.103 (6)	-0.083 (6)
C4	0.149 (7)	0.049 (3)	0.099 (5)	-0.049 (4)	0.098 (5)	-0.039 (3)
C5	0.29 (2)	0.032 (3)	0.151 (11)	-0.038 (5)	0.178 (12)	-0.027 (3)
C6	0.082 (4)	0.035 (2)	0.064 (3)	-0.018 (2)	0.052 (2)	-0.0149 (19)

Geometric parameters (Å, °)

Cd1—N1	2.349 (3)	C1—H1	0.9600
Cd1—N1 ⁱ	2.349 (3)	C2—C3	1.323 (12)
Cd1—Br1	2.6813 (5)	С2—Н2	0.9600
Cd1—Br1 ⁱ	2.6813 (5)	C3—C4	1.389 (11)
Cd1—Br1 ⁱⁱ	2.9003 (5)	С3—Н3	0.9600
Cd1—Br1 ⁱⁱⁱ	2.9003 (5)	C4—C6	1.429 (7)
Br1—Cd1 ⁱⁱ	2.9003 (5)	C4—C5	1.456 (11)
N1—C1	1.328 (6)	C5—C5 ⁱ	1.27 (2)
N1—C6	1.351 (6)	С5—Н5	0.9600
C1—C2	1.396 (8)	C6—C6 ⁱ	1.429 (10)
N1—Cd1—N1 ⁱ	71.03 (19)	N1—C1—C2	121.7 (6)
N1—Cd1—Br1	163.57 (9)	N1—C1—H1	119.4
N1 ⁱ —Cd1—Br1	93.92 (10)	C2—C1—H1	118.9
N1—Cd1—Br1 ⁱ	93.92 (10)	C3—C2—C1	120.5 (7)
N1 ⁱ —Cd1—Br1 ⁱ	163.57 (9)	С3—С2—Н2	119.3
Br1—Cd1—Br1 ⁱ	101.73 (2)	C1—C2—H2	120.2
N1—Cd1—Br1 ⁱⁱ	86.58 (9)	C2—C3—C4	120.3 (6)
N1 ⁱ —Cd1—Br1 ⁱⁱ	90.92 (9)	С2—С3—Н3	119.1
Br1—Cd1—Br1 ⁱⁱ	87.145 (15)	С4—С3—Н3	120.6
Br1 ⁱ —Cd1—Br1 ⁱⁱ	94.797 (16)	C3—C4—C6	117.4 (7)
N1—Cd1—Br1 ⁱⁱⁱ	90.92 (9)	C3—C4—C5	126.3 (7)
N1 ⁱ —Cd1—Br1 ⁱⁱⁱ	86.58 (9)	C6—C4—C5	116.4 (8)
Br1—Cd1—Br1 ⁱⁱⁱ	94.797 (16)	C5 ⁱ —C5—C4	123.4 (5)
Br1 ⁱ —Cd1—Br1 ⁱⁱⁱ	87.145 (15)	C5 ⁱ —C5—H5	117.7
Br1 ⁱⁱ —Cd1—Br1 ⁱⁱⁱ	176.93 (2)	C4—C5—H5	118.9
Cd1—Br1—Cd1 ⁱⁱ	92.855 (15)	N1—C6—C6 ⁱ	118.7 (3)
C1—N1—C6	119.0 (4)	N1—C6—C4	121.1 (6)
C1—N1—Cd1	125.3 (3)	C6 ⁱ —C6—C4	120.2 (4)
C6—N1—Cd1	115.7 (3)		
$C_{1} = 1/2$	$(1) \dots (1) \dots (1) = (1, (1)) \dots$	-1/2	

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+1, -y+1, -z+1; (iii) x, -y+1, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A	
C2—H2···Br1 ^{iv}	0.96	2.88	3.816 (12)	166	
C5—H5····Br1 ^v	0.96	2.87	3.815 (5)	167	
Symmetry codes: (iv) $x-1/2$, $y-1/2$, $z-1$; (v) $-x+1$, $y-1$, $-z+1/2$.					

Fig. 1

b